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Abstract

A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical impedance tomog-
raphy, and ultrasound imaging can be cast as inverse problems, wherein image reconstruction involves the estimation of
spatially distributed parameter(s) of the PDE system describing the physics of the imaging process. Finite element discret-
ization of imaged domain with tetrahedral elements is a popular way of solving the forward and inverse imaging problems
on complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving the forward imag-
ing problem and the other mesh used for iteratively estimating the unknown distributed parameter, can result in high res-
olution image reconstruction at minimum computation effort, if both the meshes are allowed to adapt independently. Till
date, no efficient method has been reported to identify and resolve intersection between tetrahedrons in independently
refined or coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve intersection of tet-
rahedrons within nested dual meshes generated by 8-similar subtetrahedron subdivision scheme. The algorithm exploits
finite element weight functions and gives rise to a set of weight functions on each vertex of disjoint tetrahedron pieces that
completely cover up the intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite
elements by supporting independent refinement and coarsening of each individual mesh while preserving fast identification
and resolution of intersection. The computational efficiency of the algorithm is demonstrated by diffuse photon density
wave solutions obtained from a single- and a dual-mesh, and by reconstructing a fluorescent inclusion in simulated phan-
tom from boundary frequency domain fluorescence measurements.
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1. Introduction

Over the past few decades, electrical impedance, microwave computed, diffuse optical, and fluorescence
enhanced optical tomographies have been sought as medical imaging techniques that use model-based, itera-
tive reconstruction algorithms to reconstruct distinct tissue properties for identification of interior, diseased
tissue from boundary value measurements. In these imaging modalities, the finite element method (FEM) is
used to represent arbitrary tissue volumes for solution of the forward problem, i.e., prediction of the boundary
measurements from a model and a given (or guessed) tissue property map, and for solution of the inverse
problem, i.e. recovery of the interior tissue property map from a model and set of boundary measurements.
The inverse imaging solution depends upon optimization procedures that seek to minimize the error between
forward FEM predictions and actual measurements by iteratively adjusting the spatially distributed parameter
of interest. In tomography applications, unknown parameter is typically discretized by nodal basis functions.
However, other discretization schemes such as piecewise discontinuous parameter maps are also possible. The
accuracy of the forward imaging problem solution along with the computation expense, increases with the
refinement of the finite element mesh. For the inverse problem, increasing mesh refinement results in better
potential image resolution, while at the same time increasing the number of unknown variables which can cre-
ate numerical instability. Goal-based adaptive local refinement of finite element meshes can produce highly
resolved images at a low computational cost.

The basis for mesh refinement for optimal forward and inverse problems differs and hence using a single
mesh for solving the forward problem accurately as well as limiting the number of unknowns in the inverse
problem is not possible. Therefore, the use of separate meshes, i.e., a refined mesh for accurate forward solu-
tions and a coarse inverse mesh for parameter recovery enables a complete decoupling of the two problems.
Based upon this recognition, fixed dual-mesh-based approaches have been proven to be successful [1–7]. How-
ever, when there is no a priori information available on the spatial distribution of tissue properties, the discret-
ization of forward and inverse meshes becomes arbitrary rather than optimal.

Adaptive mesh refinements based upon a posteriori error estimates have been tailored to specific models [8–
16] but have not been widely applied to distributed parameter estimation problems of the type encountered in
tomography. The few reports that employ adaptive mesh refinement in two- and three-dimensional electrical
impedance tomography [17–19] are based upon a single mesh used for both forward and inverse problems.
Although the adaptive dual-mesh techniques employing refinement both in the forward and the inverse meshes
were attempted for optical tomography [20], the work was limited to the two-dimensional problems. Recently,
Joshi et al. [21,22] reported the use of a fully adaptive, three-dimensional fluorescence enhanced optical
tomography technique that used a hexahedron-based dual-mesh scheme to improve image resolution at fea-
sible computational cost. The approach employed a forward mesh that was refined/coarsened based upon the
spatial gradient of excitation and emission fluences and of tissue properties while the inverse mesh was inde-
pendently refined/coarsened based upon the spatial gradient of tissue fluorophore concentration. The use of
hexahedral elements, however, limits application to simple rectilinear geometries. Curved geometries require
higher order or isoparametric brick shaped elements resulting in complex algorithms. As tetrahedral meshes
can be relatively easily generated for complicated geometries encountered in medical imaging, optimal, three-
dimensional adaptive tomography employing tetrahedron-based dual-adaptive mesh scheme will positively
impact multiple biomedical imaging modalities. However, independent refinement of tetrahedral elements
in the two meshes requires solution to a computationally intensive intersection problem between two tetrahe-
drons on the different meshes, which prohibits its deployment in iterative parameter estimation algorithms. In
principle, the intersection between two tetrahedrons can be found using a series of triangle-line piercing tests
conducted in three-dimensional real object space. However, the object space intersection scheme is not robust
due to the finite precision floating point arithmetic and thus sophisticated implementation is required to
circumvent the precision errors. Furthermore, geometrical searching is required to pick candidate tetrahe-
drons for intersection in the two related forward and inverse meshes. However, the simple brute force
algorithm employing intersection check for all possible pairs of tetrahedrons in the two meshes will cost
O(N2) operations where N is the number of tetrahedrons. For static tetrahedral dual-mesh tomography, the
intersection is computed once and stored at the preprocessing step. For iterative reconstruction phase, the
intersection information thus stored is repetitively used. However, the adaptive dual-mesh tomography
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requires intersection be resolved whenever the geometric environment changes due to refinement/coarsening of
forward or inverse mesh. Therefore, for adaptive tetrahedron-based dual-mesh tomography, a fast and robust
solution to the intersection problem is essential to cope with repetitive and independent refinement/derefine-
ment of the two related tetrahedral meshes. To our knowledge, there is no demonstrated method for handling
intersection in this dynamically varying situation, and consequently, no adaptive tomography technique using
tetrahedral meshes is yet available for iterative tomographic parameter estimation problems.

In this contribution we present a fast and robust algorithm to handle intersection in the nested conforming
tetrahedral elements that enables the adaptive dual-mesh-based three-dimensional tomography. The demon-
strated intersection algorithm performs refinement of a parent mesh using the 8-subtetrahedron subdivision
scheme [23] but does not perform intersection based upon real object space. Instead, the algorithm uses the
volume coordinates or linear tetrahedral element basis functions, leading to dramatically simplified, fast
and robust intersection outputs. The resolved intersection results in a set of vertices and weight function values
on each vertex of disjoint tetrahedron pieces that completely cover up the intersection region of two
tetrahedrons.

This paper is organized as follows: In Section 2, the 8-subtetrahedron subdivision scheme [23] used as the
basis of this work is briefly reviewed before the intersection handling algorithm FINT is detailed and applied
towards the finite element assembly procedure on dual mesh intersection outputs. In Section 3, first the effi-
ciency of FINT is validated by demonstrating that the finite element assembly time scales linearly with the
number of elements, followed by the application of FINT to a simulated fluorescence image reconstruction
problem. Finally, we conclude by summarizing our work and commenting upon its future implications.

2. Theory and approach

For a dual-adaptive mesh-based finite element scheme, we first define two meshes: M and M0. For the
inverse problem, M will be the forward mesh for solutions of the forward variables and M0 will be the inverse
mesh for the unknown parameter recovery, or for coupled field problems like fluorescence optical imaging, M

can be used for discretizing the excitation field while M0 is used for solving for the fluorescence emission field.
For the applications considered in this paper, M0 will be created by duplicating an initial coarse mesh M. Both
meshes will be then allowed to adaptively refine and derefine independently. Any tetrahedron in the initial
dual-mesh is called a root tetrahedron. If any tetrahedron T is subdivided into subtetrahedrons, then each sub-
tetrahedron is called a child of T and T is called the parent of the child. A tetrahedron with no children is called
a leaf tetrahedron. In the following subsection, the mesh refinement and derefinement procedure is detailed.

2.1. Refinement and derefinement in 8-similar subtetrahedron subdivision scheme

2.1.1. Mesh refinement
The 8-similar subtetrahedron subdivision scheme [23] is illustrated in Fig. 1. The scheme allows only 0, 1, or

3 split points on each triangle face, leading to four different types of tetrahedron subdivisions. Initial tetrahe-
drons are called regular. When any regular tetrahedron is refined, it is always subdivided into eight subtetra-
hedrons as shown in Fig. 1(a). The subdivision is created by the basic operation termed SUB8. Any
tetrahedrons generated by SUB8 are called regular and of the type S8. All the other subdivision configurations
shown in Fig. 1(b)–(d) are introduced to ensure conformity. The subdivisions are created by operations termed
SUB2, SUB4a, and SUB4b and produce two, four, and four child tetrahedrons, respectively. The resulting sub-
tetrahedrons are called non-regular and of type S2, S4a, and S4b, respectively. If any non-regular tetrahedron T
is chosen for refinement, its regular parent Tp is always refined first by SUB8. Therefore, the non-regular tet-
rahedrons exist only at leaf levels with no children. In the sequence of nested tetrahedral meshes, only tetra-
hedrons of types S8, S2, S4a, and S4b are present. In accordance with the 8-subtetrahedron subdivision for
tetrahedrons, triangle faces in the tetrahedral networks are refined by 4-similar subtriangle subdivision [23].
It can be noted that another tetrahedron subdivision scheme can be generated by dividing the tetrahedron into
four subtetrahedrons about a single point in the center. However, poorly shaped elements thus created will
require face-edge swapping to ensure good quality, and the new elements will not be nested, which makes
the intersection problems harder to handle for implementing dual-adaptive mesh refinement.



(a) SUB8 (b) SUB2 (c) SUB4a (d) SUB4b

Fig. 1. Four types of tetrahedron subdivisions permitted in the 8-regular subtetrahedron subdivision algorithm [15]. Filled circles are
termed split points. (a) Regular 8-subtetrahedron subdivision of a tetrahedron with one split point on each edge; (b) a non-regular
subdivision of a tetrahedron with one split point; (c) a non-regular subdivision of a tetrahedron with two split points on a pair of opposite
edges; and (d) a non-regular subdivision of a tetrahedron with three split points on the same face.
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2.1.2. Mesh derefinement

Mesh coarsening or derefinement is another operation that must be considered in fully adaptive finite ele-
ment methods. With the combination of refinement and derefinement operations, the sequence of nested mesh
becomes more efficient than when refinement operations are used alone. The efficiency arises because coars-
ening operations prevent the exponential increase in the number of nodes that would otherwise occur from
refinement operations. To date, derefinement operations have been developed for nested meshes generated
from edge bisection [24] and none exist for 8-subtetrahedron subdivision. A local derefinement algorithm in
the nested meshes created by the 8-subtetrahedron subdivision has been developed by the authors and imple-
mented also in this work. Fig. 2 illustrates examples of derefinement in a two-dimensional triangle mesh that
can be extended to three-dimensional tetrahedral mesh in a straightforward manner. Initially, all nodes pres-
ent in the tetrahedral mesh are marked as alive. Then, the nodes of the tetrahedral element T to be derefined
are marked as dead except those shared by their parent. Next, we iterate the marking process until all triangle
facets of the tetrahedral elements lying at T’s parent level have only 0, 1, or 3 alive split points. However,
uncontrolled iteration leads to arbitrary disentanglement of the nested mesh. Mesh derefinement is restricted
to a local region by employing the following procedure:

(i) Mark a tetrahedron T of the subdivision level l as dead.
(ii) Pick the neighbor regular tetrahedron Tn of the level l � 1 sharing the nodes of the parent tetrahedron Tp

of the tetrahedron T to be derefined.
(iii) Set the split point of any Tn’s edge connected to any Tp’s node as dead.
dcba

Fig. 2. A 2D example providing an overview of our derefinement algorithm. In the figure, a shaded triangle denotes the element to be
derefined and the open symbols mark dead nodes which trigger derefinement. When the shaded triangle element is to be derefined, the
affected elements are the children of the elements with thick edges. (a) A shaded leaf triangle to derefine in the center; (b) the derefined
mesh created by deletion of the shaded triangle in (a). (c) A shaded leaf triangle chosen for derefinement in the lower left from the center
element, and (d) the derefined mesh resulting by deletion of the shaded triangle in (c). The derefinement algorithm for 2D triangle meshes
can be extended to the derefinement algorithm for 3D tetrahedral meshes.
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(iv) If any edge has an endpoint marked as dead, mark its split point as dead.
(v) Mark any children of Tn and Tp with dead nodes as dead; and recurs (ii)–(v) for dead children of Tn and

Tp until no dead point appears.
(vi) Any edge E any one of whose endpoint is marked as dead, and any triangle face F any one of whose

vertex is marked as dead, are marked as dead.

The procedure completes marking up to T’s subdivision level l and may result in dead endpoints of edges of
the subdivision level l + 1, triggering marking procedure for elements of the level l + 1 outside the region occu-
pied by Tp and Tn. The marking front propagates outward symmetrically with decreasing sequence of the sub-
division level until no marking procedure is necessary. The above procedure ensures the triangles of the
subdivision level l � 1 on the boundary of the region occupied by the tetrahedrons Tp [ {Tn} to be unaffected
and retain their original 0, 1, or 3 split points, and the triangles faces shared between Tn’s to have either 0 or 1
alive split point lying only on the boundary of the region occupied by Tp [ {Tn}. Therefore, the tetrahedral
network of the subdivision level l lying outside the region occupied by Tp [ {Tn} are not affected. When tet-
rahedrons initially chosen for derefinement have different subdivision levels, we do marking processes for tet-
rahedrons lying at the deepest level first and then proceed to the next deepest level. Finally, deletion of all dead
nodes, edges, faces, and tetrahedrons, followed by reapplication of regular 8-subtetrahedron subdivision
according to the number of remaining split points, recovers conformity of the tetrahedral mesh.

In the two-dimensional cases as illustrated in Fig. 2, the element T in the above (i)–(v) corresponds to a
triangle and therefore the geometrical entity that should have 0, 1, or 3 split points is the T itself; accordingly,
we have only an edge E to mark as dead in (vi). For the derefinement of a triangle T of the subdivision level l,
the edges of the subdivision level l � 1 on the boundary of the region occupied by the triangles Tp [ {Tn} are
unaffected and thus retain their original 0 or 1 split point, whereas the edges shared between Tn’s have 0 alive

split point. Therefore, the triangular network of the subdivision level l lying outside the region occupied by the
triangles Tp [ {Tn} are not affected. Similarly, deletion of all dead nodes, edges, and triangles followed by
reapplication of regular 4-similar subtriangle subdivision according to the number of remaining split points,
recovers conformity of the triangle mesh.

2.2. Solution of intersection problem

Finite element-based solution of PDE’s on an adaptive mesh M, when the parameters are discretized on
another independently adapting mesh M0, requires the resolution of intersections between M and M0. Refine-
ment/coarsening operations in a dual-mesh environment require efficient solution to tracking tetrahedron
partners in the dual-meshes, finding the plane of intersection and solving the intersection problem. In this
work, we solve the intersection problem by taking advantage of (i) the partnership of the twin tetrahedrons
in the nested dual-mesh environments that enables fast searching of candidates of intersecting pairs of tetra-
hedrons and (ii) the local linear finite element basis functions or weight functions, otherwise called volume
coordinates that make intersection computations simple and concise.

2.2.1. Partnership

The partnership in the dual-mesh scheme is created as follows. A partner data field is introduced for each
tetrahedron of the type S8. An input parent mesh P is duplicated. P and its duplicate will be denoted as M and
M0, respectively. Then each tetrahedron in M has its twin in M0 and vice versa. Initially, all tetrahedrons in M

and M0 are marked as regular, i.e., of the type S8. The partnership is defined in Definition 1.

Definition 1. The partner of any regular tetrahedron T in M is T’s twin T0 in M0 if T0 exists, and vice versa.

If T’s partner is T0, then T0’s partner is T. Any twin tetrahedrons are always mutually related to each other
by the partner field. Therefore, each root tetrahedron in M at subdivision level 0 has its partner in M0. When-
ever a new tetrahedron T of S8 is created in M by refinement, its twin T0 is assigned as the partner of T if T0

exists in M0. Likewise, whenever a new tetrahedron T0 of S8 is created in M0 by refinement, its twin T is
assigned as the partner of T0 if T exists in M. When T is the ith child among its parent Tp’s eight children,
then its partner T0 is the ith child of T0p if (i) Tp has its partner T0p and (ii) T0p also have eight children. Otherwise



J.H. Lee et al. / Journal of Computational Physics 227 (2008) 5778–5798 5783
if the condition (i) or (ii) fails, T has no partner in M0. Any tetrahedron T of the type S2, S4a, or S4b that is not
regular has no partner. However, T’s parent Tp may have its partner because Tp is regular. Whenever any T in
M has its partner T0 in M0 and T is deleted by derefinement, T0 will lose its twin and consequently will lose its
partner, and vice versa. With these rules, the partnership is updated after each cycle of refinement/
derefinement.

2.2.2. Determination of intersection candidates

Whether a parameter or a variable, consider a quantity Q and another quantity Q0 discretized on M and
on M0, respectively, where Q and Q0 are coupled in the governing equations. Since constant or piecewise
continuous finite element basis functions are used to describe a continuously varying Q and Q0, finite ele-
ment assembly involving both Q and Q0 must be done on the intersection between a leaf tetrahedron T

on M and a leaf tetrahedron T0 on M0. Because of partnership, the assembly can be done either on T or
on T0 basis. Suppose that the assembly is performed using T. There are three cases that need to be
considered.

� case 1: T has its partner T0.
� case 2: T is of the type S8 and T has no partner.
� case 3: T is of the type S2, S4a or S4b.

In the first case in which T is of type S8, we determine whether its partner T0 has children. If T0 has children,
then all descendant tetrahedrons of T0 including T0 are completely inside T. Therefore, the intersection is triv-
ial, and T and T0 map directly.

In the second case, if T of type S8 has no partner, then any leaf tetrahedron in M0 that intersects with T

either (i) has a lower level of subdivision than T or (ii) has the same level as T and is of type S2, S4a, or
S4b. In both cases, we traverse up the hierarchy through parents until any one of T’s ancestors Ta that has
its partner T0a in M0 is visited. T0a must either (i) have only non-regular child tetrahedrons of type S2, S4a,
or S4b at the leaf level or (ii) be a leaf tetrahedron of type S8: If T0a should have eight regular children of type
S8, then the first T’s ancestor that has its partner would be found at the deeper refinement level than Ta, which
contradicts that Ta is the first ancestor with its partner. Therefore Ta cannot have eight regular children. If T is
determined to be a candidate for intersection with T0a’s children, then the intersections are computed with
respect to the internal triangle faces shared by T0a’s children if they exist, as shown in Fig. 3. Otherwise, the
intersection is trivial.

In the third case in which T is a non-regular tetrahedron of the type S2, S4a, or S4b, we traverse up the
hierarchy through parents until any one of T’s ancestors Ta that has its partner T0a in M0 is visited. There
are three possible scenarios regarding T0a: (i) If T0a is a leaf tetrahedron, the intersection is trivial because T is
inside T0a. (ii) If T0a has non-regular child tetrahedrons of type S2, S4a, or S4b, then T is observed as a can-
didate for intersections with T0a’s children. In this case, the intersections are computed with respect to the
Fig. 3. Configurations of the intersection between a specific internal triangle plane and a edge pq where r is an intersection point. The
regular tetrahedron Tijkl is a container tetrahedron and (a) a leaf tetrahedron of type S8, (b) a parent of type S2 tetrahedrons, (c) a parent of
type S4a tetrahedrons, and (d) a parent of type S4b tetrahedrons. Intersections are checked with respect to the shaded internal triangles (a)
triangle Fjk passing i, m, and l, (b) triangle Fjk passing i, m, and l, and triangle Fil passing j, n, and k, (c) triangle Fj passing i, o, and m,
triangle Fk passing i, m, and n, and triangle Fl passing i, n, and o, of the tetrahedron Tijkl.
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internal triangle faces shared by T0a’s children. (iii) Otherwise, T0a must have eight regular child tetrahedrons
of type S8 which is possible only if Ta is T’s parent Tp. If we suppose that Ta is not Tp, then Ta is an ances-
tor of Tp and Tp must be inside one of T0a’s eight children of type S8. Consequently, one of T0a’s eight chil-
dren has one of T’s ancestors as its partner which contradicts by mutual partnership that Ta is the first
ancestor of T with its partner. Therefore, Ta = Tp holds. Consequently, T0a’s leaf-level descendants are
the candidates for intersection with Tp’s children and the intersections are computed with respect to the
internal triangle faces shared by Tp’s children.

From the above scenarios, one can summarize with the following general rule. If a leaf tetrahedron T has a
partner, then T works as a geometric container covering T’s partner and all its descendants. Otherwise, the first
ancestor of T which has a partner P in M0 can be found by traversing up the parents. If P has non-regular
children, P works as a container of covering P’s partner and all its descendants. Otherwise, P has eight regular
children and T’s parent works as a container of P and P’s children. Therefore, any non-trivial intersecting sit-
uations arise from the internal triangle faces in some container tetrahedron C that is regular and the tetrahe-
drons embedded therein which are all leaf-level descendants of C’s partner. The container tetrahedron C is
classified into four different types by Definition 2:

Definition 2. If a container C is a leaf tetrahedron, C is called a type C8-container. If C has two children of
type S2, C is called a type C2-container. If C has four children of type S4a, C is called a type C4a-container.
Finally, if C has four children of type S4b, C is called a type C4b-container.

In Fig. 3, Tijkl corresponds to the container and an edge pq is an edge of one of the leaf-level descendants of
Tijkl’s partner. The algorithm handling intersections in nested adaptive tetrahedral dual-mesh is given by Algo-
rithm 1 FINT which is detailed in pseudocode below.

Algorithm 1. Fast intersections of nested tetrahedrons (FINT)
Given the nested two tetrahedral meshes M and M0,

For each leaf tetrahedron T on M not yet handled,
If T has a partner,
Handle intersection using T as C8-container.

Else
Search the first ancestor of T which has a partner P by traversing up the parents.
If P has no child,
Handle intersection using P as C8-container.
Else If P has two children of type S2,

Handle intersection using P as C2-container.
Else If P has four children of type S4a,

Handle intersection using P as C4a-container.
Else If P has four children of type S4b,

Handle intersection using P as C4b-container.
Else If P has eight children of type S8,

Denoting T’s parent by Q,
If T is of type S2,
Handle intersection using Q as C2-container.
Else if T is of type S4a,

Handle intersection using Q as C4a-container.
Else if T is of type S4b,

Handle intersection using Q as C4b-container.
End If

End If
End If

End For.
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2.2.3. Computation of intersection points
Tetrahedron–tetrahedron intersections in nested meshes generated by the 8-subtetrahedron subdivision

algorithm provide relatively simple configurations in comparison with non-nested arbitrarily configured tetra-
hedral meshes. Unfortunately, the accuracy of the intersection computations in real object space is dependent
upon the tetrahedron shapes, which results in non-robust computation in real object space. However, we have
utilized that the volume coordinate is independent of the tetrahedron shapes and can be used to provide a
robust solution to the intersection problem. For a tetrahedron T with nodes 0, 1, 2, and 3, the volume coor-
dinate ui of a point p for node i inside the tetrahedron is the volume of the subtetrahedron Tpjkl normalized
with the volume VT of T:
uiðpÞ ¼ volumeðp; j; k; lÞ=V T ð1Þ

for i, j,k, l = 0,1,2,3. The volume coordinate is identical to the local linear finite element basis function or
weight. For fast and robust intersection handling, we define a 4-vector by Definition 3 as

Definition 3. For any point p inside a tetrahedron T, a 4-vector p given by
p ¼ jwiðpÞ;wjðpÞ;wkðpÞ;wlðpÞjT ð2Þ

is called T-based representation of p, where wi(p), wj(p), wk(p), and wl(p) are weights of T’s node i, j, k, and l,
respectively, at p’s location.

The 4-vector is linear in the space occupied by T and four basis vectors i = j1,0,0,0jT, j = j0,1,0,0jT,
k = j0,0,1,0jT, and l = j0,0,0,1jT span the 4-vector space in T-based representation. Suppose that four nodes
of a container C are i, j, k, and l. Without loss of generality, we can associate nodes i, j, k, and l with four basis
vectors i = j1,0,0,0jC, j = j0,1,0,0jC, k = j0,0,1,0jC, and l = j0,0,0,1jC in C-based representation. Further-
more, the following planes of intersection can be defined:

� C of type C2 has a plane of intersection passing the triangle Fjk with the nodes i, m, and l where m is the mid-
point of the edge jk.
� C of type C4a has two planes of intersection, passing the triangle Fjk with the nodes i, m, and l, and the

triangle Fil with the nodes j, n, and k, respectively, where m and n are mid-points of the edges jk and il.
� C of type C4b has three planes of intersection passing the triangle, Fj with the nodes i, o, and m, the triangle

Fk with the nodes i, m, and n, and the triangle Fl with the nodes i, n, and o, respectively, where m, n, and o

are mid-points of the edge jk, kl, and lj, respectively.

All triangles of interest are illustrated with shaded triangles and node locations in Fig. 3. In the following,
the approach to find the intersection for each container type is described:

2.2.3.1. Intersections in C8-container. The intersection is trivial. Each intersection is each leaf tetrahedron T

embedded in the container C. T- and C-based 4-vector representations for each node of T are used directly
for finite element assembly related two leaf tetrahedrons separately from M and M0.

2.2.3.2. Intersections in C2-container. The child tetrahedron of a type C2-container C with nodes i, j, m, and l

located in the back of Fjk is denoted as L. As shown in Fig. 3(b), the mid-point m of the edge jk is associated
with a 4-vector m = j0,1/2,1/2,0jC and hence j1,0,0,0jC, j0,1,0,0jC, j0,1/2,1/2,0jC, and j0,0,0,1jC span 4-vec-
tors in the space occupied by L. Any point p inside L is also associated with a 4-vector ja,b,c,djL where a, b, c,
and d are weights of L’s four nodes i, j, m, and l. The point p is represented as jwi,wj,wk,wljC in C-based rep-
resentation as well. The 4-vector jwi,wj,wk,wljC must be a linear combination of j1,0,0,0jC, j0,1,0,0jC, j0,1/
2,1/2,0jC, and j0,0,0,1jC, which means that
jwi;wj;wk;wljC ¼ aj1; 0; 0; 0jC þ bj0; 1; 0; 0jC þ cj0; 1=2; 1=2; 0jC þ dj0; 0; 0; 1jC: ð3Þ

Therefore, we have p’s 4-vector p as
p ¼ jwiðpÞ;wjðpÞ;wkðpÞ;wlðpÞjC; ð4Þ
p ¼ jwiðpÞ; djkðpÞ; 2wkðpÞ;wlðpÞjL; ð5Þ
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with djk defined by
djkðpÞ ¼ wjðpÞ � wkðpÞ: ð6Þ

For the other child tetrahedron R with four nodes i, m, k, and l in the front of Fjk, j1,0,0,0jC, j0,1/2,1/2,0jC,
j0,0,1,0jC, and j0,0,0,1jC span 4-vectors in the space occupied by R. In the same manner, a 4-vector q of any
point q inside R is obtained in the same way;
q ¼ jwiðqÞ;wjðqÞ;wkðqÞ;wlðqÞjC; ð7Þ
q ¼ jwiðqÞ; 2wjðqÞ; dkjðqÞ;wlðqÞjR: ð8Þ
The intersection point r between the edge pq and the triangle Fjk can be represented by
r ¼ ð1� tÞpþ tq; 0 < t < 1 ð9Þ

because of the linearity. From (5), (6), and (8), one can show that
dkjðrÞ ¼ 0 ð10Þ

if r is on Fjk. Eq. (10) then requires (1 � t)wj(p)+twj(q)=(1 � t)wk(p)+twk(q) and t becomes
t ¼ dkjðpÞ
dkjðqÞ � dkjðpÞ

: ð11Þ
Eq. (10) expresses the plane equation of Fjk in 4-vector space and any edge with endpoints p and q will intersect
if and only if dkj(p)dkj(q) < 0. Combination of (9) and (11) gives rise to the 4-vector r in C-based representation
at the intersection point r. At the final output of the presented algorithm, any points inside C will be switched
into L or R-based representation using (5) or (8) for finite element assembly related two leaf tetrahedrons sep-
arately from M and M0.

2.2.3.3. Intersections in C4a-container. As shown in Fig. 3(c), there exist two mid-points m and n represented by
m = j0,1/2,1/2,0jC and n = j1/2,0,0,1/2jC. The four subtetrahedrons of C are denoted by P with nodes i, j, m,
and n; Q with nodes i, k, n, and m; R with nodes l, j, n, and m; and S with nodes l, k, m, and n. Then, any 4-
vector p = jwi(p), wj(p), wk(p), wl(p)jC inside P, Q, R, or S is represented by one of the following 4-vectors,
respectively;
p ¼ jdilðpÞ; djkðpÞ; 2wkðpÞ; 2wlðpÞjP; ð12Þ
p ¼ jdilðpÞ; dkjðpÞ; 2wlðpÞ; 2wjðpÞjQ; ð13Þ
p ¼ jdliðpÞ; djkðpÞ; 2wiðpÞ; 2wkðpÞjR; ð14Þ
p ¼ jdliðpÞ; dkjðpÞ; 2wjðpÞ; 2wiðpÞjS: ð15Þ
The intersection condition can be derived similarly to (10) and reads;
dliðrÞ ¼ 0; ð16Þ
djkðrÞ ¼ 0; ð17Þ
with respect to the triangles Fil and Fjk, respectively. Then the intersection point r is obtained using (9) and (11)
with dli and djk defined with respect to Fil and Fjk. At the end, any points inside C will be switched into P, Q, R,
or S-based representation using (12)–(15) for finite element assembly related two leaf tetrahedrons separately
from M and M0.

2.2.3.4. Intersections in C4b-container. As shown in Fig. 2(d), there exist three mid-points m, n, and o repre-
sented by m = j0,1/2,1/2,0jC, n = j0,0,1/2,1/2jC, and o = j0,1/2,0,1/2jC. The four subtetrahedrons of C are
denoted by P with nodes i, j, m, and o; Q with nodes i, k, n, and m; R with nodes i, l, o, and n; and S with
nodes i, m, n, and o. Following the same convention as above, j1,0,0,0jC, j0,1,0,0jC, j0,1/2,1/2,0jC, and
j0,1/2,0,1/2jC span 4-vectors in the space occupied by P; j1,0,0,0jC, j0,0,1,0jC, j0,0,1/2,1/2jC, and j0,1/
2,1/2,0jC span 4-vectors in Q; j1,0,0,0jC, j0,0,0,1jC, j0,1/2,0,1/2jC, and j0,0,1/2,1/2jC span 4-vectors in R;
and finally, j1,0,0,0jC, j0,1/2,1/2,0jC, j0,0,1/2,1/2jC, and j0,1/2,0,1/2jC span 4-vectors in S.
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Using the same analyses carried out above, any 4-vector p = jwi(p), wj(p), wk(p), wl(p)jC inside P, Q, R, or S

is represented by one of the following 4-vectors, respectively;
p ¼ jwiðpÞ; dj;klðpÞ; 2wkðpÞ; 2wlðpÞjP; ð18Þ
p ¼ jwiðpÞ; dk;ljðpÞ; 2wlðpÞ; 2wjðpÞjQ; ð19Þ
p ¼ jwiðpÞ; dl;jkðpÞ; 2wjðpÞ; 2wkðpÞjR; ð20Þ
p ¼ jwiðpÞ;�dj;klðpÞ;�dk;ljðpÞ;�dl;jkðpÞjS; ð21Þ
where di,jk is defined by
di;jkðpÞ ¼ wiðpÞ � wjðpÞ � wkðpÞ: ð22Þ

The plane equations for the triangles Fj, Fk, and Fl become
da;bcðpÞ ¼ 0; ð23Þ

with a, b, c = j, k, l cyclic, respectively. 4-vectors rj, rk, and rl for intersection points with respect to Fj, Fk, and
Fl can be derived from (9) and (23), and the resulting interpolation coefficients tj, tk, and tl are given by
ta ¼
da;bcðpÞ

da;bcðpÞ � da;bcðqÞ
ð24Þ
with a, b, c = j, k, l cyclic. At the end, any points inside C will be switched into P, Q, R, or S-based represen-
tation using (18)–(21) for finite element assembly related two leaf tetrahedrons separately from M and M0.

2.2.4. Weight registering
The weight-based intersection computation requires 4-vectors in container-based representation. Therefore,

each node of any leaf tetrahedron Tl in M embedded in its container C in M0 must be registered with a 4-vector
in C-based representation. The 4-vectors are computed from the partner Ta of the container C where Ta is one
of Tl’s ancestors in M. It is noteworthy that direct computations of weights using nodal coordinates are
avoided. All leaf tetrahedrons including Tl, inside the volume occupied by C, are accessible by downward pre-

order traversal of the tetrahedron subtree rooted at the tetrahedron Ta. If the tetrahedron Tc currently visited
is not a leaf, the preorder work is to register weights for split points on edges of Tc. Otherwise if Tc is a leaf, the
preorder work is to resolve intersection and gather disjoint tetrahedron pieces including weight maps and
nodal indices that are coupled. The details are as follows: Ta’s four nodes ia, ja, ka, and la are represented
by ia = j1,0,0,0jC, ja = j0,1,0,0jC, ka = j0,0,1,0jC, and la = j0,0,0,1jC, because Ta is C’s twin. Then the recur-
sive weight registering procedure starts with Tc = Ta where Tc denotes the tetrahedron currently visited.
Whenever any edge pq of Tc has a mid-point m, a 4-vector m for m is registered using (9) with t = 1/2, that
is, m = (p + q)/2 and then each child of Tc is visited. If Tc is a leaf, intersection is resolved and disjoint tetra-
hedron pieces including coupling information related with the pieces are collected using the method described
in the Section 2.2.3. Weight registering terminates when all leaf tetrahedrons in M embedded in C are visited
and returns with all intersections in C fully resolved.

Fig. 4 illustrates the process of weight registering in 2D triangle meshes that is directly applicable to 3D tet-
rahedral meshes except that in 2D, we work with 3-vectors instead of 4-vectors. Assuming that i = j1,0,0jC,
j = j0,1,0jC, and k = j0,0,1jC, then 3-vector representation of l is given by l = j0,1/2,1/2jC. Any point p in
the space occupied by C is associated by a 3-vector p = jwi(p),wj(p),wk(p)jC where wi(p) is p’s weight or area
coordinate with respect to i, etc. We also know that the equation of the line of intersection is given by
djk(p) = wj(p) � wk(p) = 0 in the 3-vector space and any edge pq intersects with the edge il if djk(p)djk(q) < 0.
Because C is the partner of Ta = {n1,n2,n3}, we have n1 = j1,0,0jC, n2 = j0,1,0jC, and n3 = j0,0,1jC. Next,
we start the preorder traversal down the subtree rooted at Ta. The firstly visited triangle is Ta. Because it is
not a leaf, the 3-vectors n4 = j0,1/2,1/2jC, n5 = j1/2,0,1/2jC, and n6 = j1/2,1/2,0jC are registered. The secondly
visited triangle is the first Ta’s child T1 = {n1,n6,n5}. Because T1 is a leaf, we check whether it intersects with
the edge il. We see that the edge n6n5 intersects with il since djk(n6)djk(n5) = �1/4 < 0 and therefore we resolve
intersection for T1 and obtain disjoint triangle pieces and weight maps for (T1,L) and for (T1,R). The third
visited triangle is T2 = {n2,n4,n6} which is not a leaf and therefore n7 = j1/4,1/2,1/4jC, n8 = j1/4,3/4,0jC,



Fig. 4. Illustration of weight registering in 2D triangle meshes which is extended directly to 3D tetrahedral meshes. (a) Two intersecting
sub-meshes in M (left) and M0 (right); (b) the triangle subtree rooted at Ta where Ta is the ancestor with its partner C that is first visited
when traversing upward the triangle tree through parents from a leaf triangle, for example, T3, or T9, etc. (c) The sequence of visiting
triangles in preorder traversal of the subtree. L and R are two non-regular children of the container triangle C and the edge il lies on the line
of intersection. W and I indicate the preorder work that is performed when visiting each triangle, where W registers weight on the mid-point
of edges of the triangle currently visited and I resolves intersection and obtains disjoint triangle pieces including weight maps and nodal
indices of the two triangles that are coupled.
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and n9 = j0,3/4,1/4jC are registered. The fourth visited triangle is a leaf triangle T5 = {n6,n8,n7} and therefore
intersection is checked. Since djk(n6) = 1/2 > 0, djk(n8) = 3/4 > 0, and djk(n7) = 1/4 > 0, T5 does not intersect
with il and is inside L since all djk P 0. We collect T5 as a triangle piece and obtain weight maps between
T5 and L, etc. In the same manner, the next visited three leaf triangles T6, T7, and T8 can be found not to inter-
sect with il and satisfy djk P 0 for all nodes. Since all children of T2 have been visited, we next move to
T3 = {n3,n5,n4}. Since T3 is a leaf, we check intersection and find that djk(n3) = �1 < 0, djk(n5) = �1/2 < 0,
and djk(n4) = 0. Since djk 6 0 for all nodes of T3, T3 does not intersect il. The negative sign denotes that T3

is inside R and we obtain T3 as a triangle piece and weight maps between T3 and R. Next we visit
T4 = {n4,n5,n6} which is not a leaf, and register n7; we allow overwriting though n7 was already registered.
Now, only leaf triangles T9 and T10 are left, and in the same manner as described above, we see that they inter-
sect il and obtain triangle pieces, etc. One should note that the whole procedure described so far is applied to
3D tetrahedral meshes in exactly the same manner.

2.2.5. Tetrahedron piece collection and weight mapping

Whenever a leaf tetrahedron T on M is visited during weight registration inside the container C on M0,
intersections are considered between T and T0 on M0, where T0 is C or one of C’s children if they exist.
Two 4-vectors u and v in T- and T0-based representation, respectively, are required to couple T and T0. If
all edges of T are non-intersecting, then all four nodes of T belong to the space occupied by some T0, and
u and v are collected for each node of T. If any edge of T is intersecting one of the internal triangles of C,
the 4-vectors u and v in T- and C-based representation, respectively, are computed at the intersection point,
and two tetrahedron pieces are generated by bisection of T using the intersection point as a split point. Inter-
section computation and tetrahedron bisection are repeated for each tetrahedron piece thus generated and new
pieces are created until no intersections are encountered. Any resulting tetrahedron piece Tr belongs to the
space occupied by either T0 or T0’s siblings. After each 4-vector v for Tr’s vertices is switched into T0 or into
T0’s sibling-based representation from C-based one by using (5), (8), (12)–(15) or (18)–(21), then u, v, spatial
coordinates for each vertex of the tetrahedron piece and two index arrays indicating nodes of T and T0 (or one
of T0’s siblings) that are coupled are gathered together. Finally, the gathered information is stored in computer
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memory, or if required, finite element assembly is performed using the information. Fig. 5 illustrates examples
of the set of disjoint tetrahedron pieces generated by FINT.

2.2.6. Finite element assembly
FINT gives rise to a set of vertices, 4-vectors u and v on each vertex of disjoint tetrahedron pieces that com-

pletely cover up the intersection of two leaf tetrahedrons T and T0 from the meshes M and M0, respectively.
Suppose that {un(x)jn = 0,1,2, . . .} and {wn(x)jn = 0,1,2, . . .} are linear finite element basis functions in M

and M0, respectively, where x is a real space coordinate vector. For each vertex a of a tetrahedron piece D
in the intersection of T and T0, 4-vectors u and v are given by
Fig. 5.
(a) of
ua ¼ juiðxaÞ;ujðxaÞ;ukðxaÞ;ulðxaÞjT; ð25Þ
va ¼ jwi0 ðxaÞ;wj0 ðxaÞ;wk0 ðxaÞ;wl0 ðxaÞjT0 ; ð26Þ
where {i, j, k, l} and {i0, j0, k0, l0} are nodes of T and T0, respectively, and xa is the coordinate vector of a. For
each vertex a of the piece D, a virtual linear basis function pa(x) is introduced. pa(x) subtends D and behaves
like a usual basis function with
paðxbÞ ¼ dab; ð27ÞZ
D

pa
pp

b
qp

c
rp

d
s dv ¼ 6V D

a!b!c!d!

ðaþ bþ cþ d þ 3Þ! ; ð28Þ
where vertices {p, q, r, s} and VD are the vertices and the volume of D, respectively; that is, pa is the volume
coordinates with respect to D. Linear property of un(x), wn(x), and pa(x) gives rise to the relationships,
un(x) = Raun(xa)pa(x) and wn(x) = Rawn(xa)pa(x), enabling two 4 � 4 transformation matrices U and V to
be introduced:
Una ¼ unðxaÞ; ð29Þ
V na ¼ wnðxaÞ: ð30Þ
Illustration of three sets of disjoint tetrahedron pieces generated by FINT for a given set of tetrahedrons embedded in its container
type C2, (b) of type C4a, and (c) of type C4b, respectively.
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The matrices U and V perform the change of basis from the virtual basis p to the actual basis u and w, respec-
tively, and inside D result in:
uiðxÞ ¼
X

a

UiapaðxÞ; ð31Þ

wiðxÞ ¼
X

a

V iapaðxÞ: ð32Þ
Integrations of products that u, w, or both are involved in are performed over D for finite element assembly by
treating p as the usual linear finite element basis function. For example,

R
DruiðxÞ � $wjðxÞdv ¼P

abUiaV jb

R
DrpaðxÞ � $pbðxÞdv, and

R
D uiðxÞwjðxÞdv ¼

P
abU iaV jb

R
D paðxÞpbðxÞdv, and so forth.

3. Computational experiments

3.1. Forward imaging problem in fluorescence optical tomography

A coupled system of PDE for fluorescence enhanced optical imaging provides an excellent example to assess
the finite element assembly cost and the capability for independent refinement/derefinement in the dual-mesh
scheme using FINT. The coupled governing equations describing excitation and fluorescence light propaga-
tion can be described as [25]
½�r � DxðxÞr þ kx�Uxðx;xÞ ¼ 0; ð33Þ
½�r � DmðxÞr þ km�Umðx;xÞ ¼ bxmUxðx;xÞ; ð34Þ
where Dx,m = 1/[3(laxi;ami þ laxf ;amf þ l0sx;smÞ], kx,m = ix/c + laxi,ami(x)+laxf,amf(x), and bxm = qlaxf/[1 � ixs
(x)]. An index x denotes the excitation field and m denotes the emission field; Ux,Um are photon fluence fields
at excitation and emission wavelengths, respectively; Dx,m are photon diffusion coefficients; laxi,ami is the
absorption coefficient due to endogenous chromophores; laxf,amf is the absorption coefficient due to exogenous
fluorophores; l0sx;sm is the reduced scattering coefficient; x = 2pf where f is the modulation frequency; q is the
quantum efficiency of the fluorophore; finally, s is the lifetime of fluorescence. Eqs. (33) and (34) are solved
under the Robin-type boundary conditions
2Dxn � rUx þ cUx þ SðxÞ ¼ 0; ð35Þ
2Dmn � rUm þ cUm ¼ 0; ð36Þ
where n is the unit outward surface normal vector, c is a constant depending only upon the refractive index
mismatch on the boundary, and S(x) is the excitation boundary source distribution.

In order to evaluate FINT, we considered excitation and emission fluence solutions for two cases: (1) adap-
tive single mesh discretizing both Ux and Um in which the combination of the spatial gradients of Ux and Um

determined refinement/derefinement and (2) two adaptive meshes separately discretizing Ux and Um in which
the spatial gradients of Ux and Um independently determined refinement/derefinement. The geometry consid-
ered was an otherwise optically homogeneous sphere (chosen to challenge curvilinear surface representation)
embedded with two fluorescent spheres. The ‘‘background” sphere was 5 cm in diameter and centered at the
(x,y,z) coordinate origin. The embedded two spheres were 1 cm in diameter and centered at (1.25 cm, 0,
1.25 cm) and (�1.25 cm, 0, 0), respectively. A point source of modulated excitation light was at the surface
location of (0, 0, 2.5 cm). For simplicity, we assumed optical properties of laxi = lami = lamf = 0.01 cm�1,
l0sx ¼ l0sm ¼ 10:0 cm�1, and laxf = 1.0 cm�1. The other parameters were assumed to be f = 100 MHz,
q = 0.1, s = 0.1 ns, and refractive index n = 1.33. As an a posteriori error estimator for refinement/derefine-
ment of tetrahedral meshes, we used an error estimator based upon Kelly’s flux jump criterion [26]
e½f � ¼ h
Z

A

of
on

����
����
2

�
da; ð37Þ
across the triangle facet of the tetrahedral element, where h is the height of the tetrahedron, A is the area of
the triangle, and jof/onj± is the jump of the normal derivative of f across the triangle facet. Eq. (37)
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measures the spatial curvature of the variable f of interest. For the present case, we relate f with a fluence
field U. In the single-mesh, we took the element error with es = e[Ux/max{jUxj}] + em[Um/max{jUmj}] to put
an equal significance to Ux and Um, by which the element is chosen for refinement if es > ds,rmax{es} or dere-
finement if es < ds,dmax{es}. In the dual-mesh, we took the element error in the first mesh (in which Ux is
solved) with ex = e[Ux], and the element error in the second mesh (in which Um is solved) with em = e[Um],
by which the element in the first mesh is chosen for refinement if ex > dx,r max{ex} or derefinement if ex <
dx,d max{ex}, and the element in the second mesh is chosen for refinement if em > dm,rmax{em} or derefinement
if em < dm,dmax{em}. The refinement/derefinement factors chosen are ds,r = 10�4, ds,d = 10�8,
dx,r = 10�8,dx,d = 10�14, dm,r = 10�1, and dm,d = 10�8. In both single- and dual-mesh schemes, we solved the
excitation equation first, passed the value of the excitation fluence field to the emission equation and solved
the emission field. In the single-mesh, the finite element assembly was executed directly using the elements
in excitation and emission problems, respectively. In the dual-mesh scheme, finite element assembly in the exci-
tation problem was executed by passing elements in the first mesh to FINT as input tetrahedrons, while ele-
ments in the second mesh were passed to FINT as input tetrahedrons for finite element assembly in the
emission problem. All computations were done using the PC with 3.6 GHz Pentium 4 processor and
3.25 GB RAM.

3.2. Inverse problem in fluorescence optical tomography

FINT will be applied primarily for inverse imaging problems. The second computational experiment
illustrates the application of FINT toward dual-adaptive mesh-based fluorescence tomography. A cylindri-
cal phantom with 5 cm diameter and 6 cm height was simulated with a 5 mm diameter spherical fluorescent
target located at the off-center position, (1.0 cm, 0.0, 1.0 cm). Synthetic frequency domain fluorescence mea-
surements were collected for 24 sources and 24 detectors positioned in three concentric rings with eight
sources and eight detectors each. The source-detector rings were positioned 1.5 cm apart in the axial direc-
tion. Simulation geometry is depicted in Fig. 6. The optical properties were assumed to resemble that of 1%
Liposyn solution and the fluorescence contrast corresponded to a 0.5 lM indocyanine green dye in the
tumor equivalent to laxf = 0.1 cm�1. For more details on optical properties, we refer the reader to [27].
A trust region Gauss–Newton image reconstruction algorithm was used to invert the synthetic
measurements.
Fig. 6. Simulated frequency domain fluorescence measurements to assess the inverse imaging application of FINT. (a) The mesh used to
create simulated boundary measurement; (b) 24 source locations; and (d) 24 detector locations.



Fig. 7. Tetrahedral mesh refinement/derefinement evolutions from (a) an initial mesh. For each two meshes shown in (b)–(d), the left and
right meshes have been obtained after the third and fifth adaptive iteration, respectively. The illustrated in (b)–(d) are the evolutions: in (b)
a single mesh in which gradients of {Ux, Um} were used as criteria for refinement/derefinement; in (c) the first of a dual-mesh in which the
excitation Eq. (33) was solved and gradients of Ux were used as a criteria for refinement/derefinement; and in (d) the second of the dual-
mesh in which the emission Eq. (34) was solved and gradients Um were used as a criteria for refinement/derefinement. The meshes were
globally refined using the regular subdivision at the first iterations. In (b) and (c), regular elements of the subdivision level zero or non-
regular elements of the subdivision level one are visible around the opposite side of the illuminated position, illustrating that small portions
of the meshes were derefined.

Table 1
Change in the number of elements and nodes in the adaptive single mesh used for solutions of the coupled photon diffusion problem
(E = elements, N = nodes, N/A = not applied)

Iteration Start Refinement Derefinement

E N E N E N

1 3760 791 30,080 5600 N/A N/A
2 30,080 5600 69,822 12,481 67,158 11,971
3 67,158 11,971 139,441 24,319 N/A N/A
4 139,441 24,319 246,480 42,600 N/A N/A
5 246,480 42,600 376,565 64,820 NA N/A
6 376,565 64,820 N/A N/A NA N/A
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4. Results and discussion

4.1. Forward problem simulation results

For the forward simulation experiment described in Section 3.1, starting from an initial coarse mesh with
3760 tetrahedral elements and 791 nodes, five refinement/derefinement iterations were executed. The initial
Table 2
Change in the number of elements and nodes in the first mesh used for solution of the excitation fluence field in coupled photon diffusion
problem with the adaptive dual mesh scheme (E = elements, N = nodes, N/A = not applied)

Iteration Start Refinement Derefinement

E N E N E N

1 3760 791 30,080 5600 N/A N/A
2 30,080 5600 77,254 13,816 N/A N/A
3 77,254 13,816 157,765 27,765 157,601 27,731
4 157,601 27,731 263,924 46,103 263,582 46,035
5 263,582 46,035 427,382 74,190 426,331 73,990
6 426,331 73,990 N/A N/A NA N/A

Table 3
Change in the number of elements and nodes in the second mesh used for solution of the emission fluence field in the coupled photon
diffusion problem with the adaptive dual mesh scheme (E = elements, N = nodes, N/A = not applied)

Iteration Start Refinement Derefinement

E N E N E N

1 3760 791 30,080 5600 N/A N/A
2 30,080 5600 32,820 6070 N/A N/A
3 32,820 6070 60,384 10,824 N/A N/A
4 60,384 10,824 122,863 21,480 N/A N/A
5 122,863 21,480 367,847 63,200 N/A N/A
6 367,847 63,200 N/A N/A N/A N/A

Fig. 8. Isosurface plots for amplitude and phase of Ux and Um in the single- and dual–mesh schemes using the fifth refined/derefined
meshes where (a)–(d) are results from the single-mesh scheme, and (e)–(h) are results from the dual-mesh scheme. The figures shown are
the plots of (a) log10jUxj, (b) phase[Ux], (c) log10jUmj, and (d) phase[Um], (e) log10jUxj, (f) phase[Ux], (g) log10jUmj, and (h) phase[Um].
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mesh and iteratively adapted meshes after three and five refinements/derefinements are illustrated in Fig. 7.
The changes in the number of tetrahedral elements and nodes for the (i) single mesh-based discretization of
both excitation/emission fields, (ii) dual-mesh discretization of excitation field, and (iii) dual-mesh discretiza-
tion of the emission field are summarized in Tables 1–3, respectively. At the first adaptation, global refine-
ments were applied for both the single and the dual meshes, and the selective refinement/derefinement
according to the error estimates were performed from the second adaptation onwards. For the single mesh,
the mesh obtained after five iterations of refinement/derefinement had 376,565 tetrahedral elements and
64,820 nodes. After five iterations of the dual-mesh adaptation, the first mesh which was refined/derefined
on the basis of Ux and discretizing Ux, laxi, and l0sx had 426,331 tetrahedral elements and 73,990 nodes and
the second mesh which was refined/derefined on the basis of Um and discretizing Um, lami, lamf, laxf, and
l0sm had 367,847 tetrahedrons and 63,200 nodes.

The FEM solutions in single-mesh and dual-mesh method for the phase and amplitude of Ux and Um are
illustrated in Fig. 8 with alpha-blended 3D isosurface plots. The solutions from the single-mesh and dual-mesh
approaches shown in Fig. 8 are identical, demonstrating that we can successfully decouple and solve the cou-
pled field problems using two independently self-adapting dual meshes if FINT is employed. The results show
that FINT gives rise to the exact coupling between the two independently self-adapting meshes and therefore
enables the separate adaptive finite element analysis for each field, bringing flexibility into the adaptive finite
element methods using tetrahedral elements.
Fig. 9. Time required for finite element assembly in single-mesh (S) and dual-mesh (D) scheme: (a) assembly times with respect to the
number of elements, (b) the number of disjoint tetrahedron pieces generated by FINT with respect to the number of elements, and (c) the
assembly time with respect to the number of the tetrahedron pieces obtained by FINT. X and M mean the excitation field and the emission
field, respectively. X + M indicates that elements and times are counted by adding the counts from X and from M.
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The finite element assembly time cost is illustrated in Fig. 9, where the assembly cost includes all operations
in FINT, such as the identification of the container, tree traversal, tetrahedron piece generation, and actual
finite element assembly. For the refined/derefined dual-mesh, the overall finite element assembly times in
the dual-mesh scheme for Ux and Um were approximately linear in the total number of tetrahedral elements
involved in the assembly as shown in Fig. 9. The patterns of assembly cost in the first and in the second mesh
shown in Fig. 9(a), with respect to number of elements in the first and the second mesh, respectively, match the
Fig. 10. Final forward and parameter meshes obtained from refinements of the initial coarse mesh shown in (a) through 100 Gauss–
Newton iterations where (b) and (c) show the final forward and parameter meshes, respectively.

Fig. 11. Reconstructed and actual fluorescent targets in slice and isosurface plot, where (a) and (b) show reconstructed target while (c) and
(d) show actual target. The isosurface represents FWHM (50% of the maximum contour levels).
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patterns of the number of tetrahedron pieces shown in Fig. 9(b). It is noteworthy that the assembly time
required for Ux and Um in the dual-mesh is proportional to the number of disjoint tetrahedron pieces gener-
ated based upon the first and the second mesh, respectively, as illustrated in Fig. 9(c), which indicates the cost
of FINT operations including container identification, tree traversal, and tetrahedron piece collection is mar-
ginal and the whole computational cost is dominated by the actual finite element assembly step.

4.2. Inverse image reconstruction results

For the inverse imaging computational experiment described in Section 3.2, the initial parameter mesh con-
sisted of 187 nodes and 754 tetrahedrons. This mesh was used for discretizing the laxf. For forward simula-
tions the initial parameter mesh was duplicated and refined once toward the cylinder boundary to provide 643
nodes and 2927 tetrahedrons for solving the coupled photon diffusion equations. A trust region Gauss–New-
ton algorithm was used to iteratively update the parameter map. Both the forward and parameter meshes were
adaptively refined along the Gauss–Newton iterations.

To drive adaptive mesh refinement, we introduced a smoothness measure of the spatial distribution of laxf

where the measure is checked after every five successive iterative reconstructions to determine whether or not
to trigger refinements [28]. If a significant change in laxf was detected, the dual-mesh adaptation was per-
formed where the two meshes discretizing fluence fields and the unknown parameter laxf were locally refined
using Kelly’s criterion (37) for the fluence fields and laxf, respectively. In practice, derefinement was found to
be unnecessary since the overly refined situations were avoided using the smoothness check. However it must
be noted that these image reconstructions have been performed with simulated measurements, under realistic
conditions of low SNR fluorescence measurements, and the absence of prior knowledge about the interior of
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Fig. 12. The variations in the number of elements and nodes in the forward and the parameter mesh with respect to the number of the
iterative reconstructions performed.
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the imaged domain, derefinement might be necessary in obtaining suitable meshes, and for avoiding spurious
mesh refinements in the first few Newton steps. The image reconstruction algorithm and the image smoothness
measure used for mesh refinements are detailed elsewhere in the description of dual-adaptive mesh-based fluo-
rescence optical tomography [28].

One hundred Gauss–Newton iterations were carried out during which the forward mesh refinement was
triggered 12 times, while the parameter mesh was locally refined 10 times. Final forward and parameter meshes
are depicted in Fig. 10. Reconstructed fluorescent target is depicted via slice plots and isosurfaces drawn at
FWHM (50% of the maximum contour levels) are illustrated in Fig. 11. The variations in the number of nodes
and elements due to refinements in the forward and the parameter meshes are illustrated in Fig. 12. Total
image reconstruction time was 7.28 min on a PC with 3.6 GHz Pentium 4 processor and 3.25 GB RAM.
The total computational cost of the image reconstruction algorithm is dominated by the forward problem
solution cost [28]. Final parameter mesh consisted of only 608 nodes, while still providing diffusion length lim-
ited resolution in the vicinity of the reconstructed target demonstrating the power of adaptive mesh refine-
ment-based inverse imaging.

5. Summary and conclusions

We have presented and demonstrated an algorithm called FINT for handling intersections in the nested
conforming tetrahedral environments that enables the adaptive dual-mesh-based finite element methods.
The motivation of this work is to obtain an efficient dual-mesh coupling scheme for development of fully
adaptive three-dimensional fluorescence enhanced optical tomography using two tetrahedral meshes generated
by 8-subtetrahedron subdivision. The key strength of FINT algorithm lies in using nested meshes and weight
registering using linear finite element basis functions that significantly facilitates the intersection handling and
weight mapping between tetrahedral elements from the two separate meshes. FINT can be applied not only to
the polyhedral regions but also to the geometry with smooth curved surfaces, a benefit that arises from 4-vec-
tor-based intersection and interpolation schemes. FINT produces information on a set of disjoint tetrahedrons
with weight maps of tetrahedral elements from two separate meshes. Finite elements are assembled on the tet-
rahedron piece by piece basis using virtual linear basis functions defined on each piece. We have also demon-
strated that FINT provides a fast and robust tool to couple two meshes while allowing them to be
independently refined or derefined as evidenced in the coupled system of excitation/emission photon diffusion
equations. The finite element assembly time on dual meshes with FINT increased linearly with the number of
elements against the quadratic increase which will result from a brute force intersection computation. We also
demonstrated the application of FINT for a simple fluorescence optical tomography problem. Detailed discus-
sions of mesh refinement criteria and tomography algorithm development have been reported elsewhere [28].
This work represents the first step for incorporating tetrahedral FEM strategies in an array of parameter esti-
mation problems, including that of fluorescence optical tomography and other medical, model-based tomog-
raphy approaches. The dual-adaptive strategies enabled by FINT algorithm can increase the computational
performance of recently proposed shape-based inverse imaging algorithms [29,30].
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